Tracer diffusion in granular shear flows.

نویسنده

  • Vicente Garzó
چکیده

Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor D(ij) instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements D(ij) is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular-dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear-Rate-Independent Diffusion in Granular Flows.

We computationally study the behavior of the diffusion coefficient D in granular flows of monodisperse and bidisperse particles spanning regions of relatively high and low shear rate in open and closed laterally confined heaps. Measurements of D at various flow rates, streamwise positions, and depths collapse onto a single curve when plotted as a function of γd2, where d is the local mean parti...

متن کامل

A Theory of Cooperative Diffusion in Dense Granular Flows

Dilute granular flows are routinely described by collisional kinetic theory, but dense flows require a fundamentally different approach, due to long-lasting, many-body contacts. In the case of silo drainage, many continuum models have been developed for the mean flow, but no realistic statistical theory is available. Here, we propose that particles undergo cooperative displacements in response ...

متن کامل

Analytical solution of the μ(I)−rheology for fully developed granular flows in simple configurations

Using the μ(I) continuum model recently proposed for dense granular flows, we study theoretically steady and fully granular flows in two configurations: a plane shear cell and a channel made of two parallel plates (Poiseuille configuration). In such a description, the granular medium behaves like a fluid whose viscosity is a function of the inertia. In the shear plane geometry our calculation p...

متن کامل

Continuum approach to wide shear zones in quasistatic granular matter.

Slow and dense granular flows often exhibit narrow shear bands, making them ill suited for a continuum description. However, smooth granular flows have been shown to occur in specific geometries such as linear shear in the absence of gravity, slow inclined plane flows and, recently, flows in split-bottom Couette geometries. The wide shear regions in these systems should be amenable to a continu...

متن کامل

Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow

Measurements were made of two components of the average and fluctuating velocities, and of the local self-diffusion coefficients in a flow of granular material. The experiments were performed in a 1 m-high vertical channel with roughened sidewalls and with polished glass plates at the front and the back to create a two-dimensional flow. The particles used were glass spheres with a nominal diame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002